
Data-Centric Parallelisation

Magnus Morton, Zhibo Li, Björn Franke

3rd December 2020

Overview

• "Traditional" auto-parallelisation tools are code-centric

• Ignore context of whole program

• Struggles on pointer-chasing or control-flow heavy programs

1

Overview

• Can we use whole program context?

• Can we replicate a human expert?

2

Data-Centric Parallelisation

• Data-Centric Parallelisation (DCP) project aims to do so

• We want to develop a data-first paradigm for parallelisation

• Raise the level of abstraction of existing data structures

3

Motivating Example

• Consider a program that traverses and increments each element of a linked list

s t ruct node ∗ c u r r = l i s t ;
while (c u r r != NULL) {

cu r r−>va l u e++;
c u r r = cur r−>next ;

}

• This is not parallelisable by traditional parallelising compiler

• We can see that it trivially parallelisable

4

Motivating Example

• Our linked list could easily be swapped for an array, or even a set if we know
ordering and uniqueness constraints

s t d : : s e t<int> l i s t ;
fo r (auto&& v : l i s t) {

v++;
}

5

Motivating Example

• Program is now trivially parallelisable
• Either by automatic tool, or by using parallel library

• Program is also modernised

• DCP seeks to do this automatically

6

Preliminary Work

• Early work suggests that this sort of approach can give 3.5x - 980x speedups

• This is just by lifting to stl data structures

7

DCP Overview

• DCP is formed of 3 components

• Data structure detection

• Property-based data structure library

• A code generation tool

8

Data Structure Detection

• We need to detect exisiting use of data structures

• Not just the exact data structure used, but the most abstract

• What complexity do they want for access/insert/delete etc.?

• Does ordering matter?

• What the programmer wrote may not be what they actually want or need

9

Shape Analysis

• Dynamic analyis

• Pointer-based analysis

• Looking at "shape" of data structure on heap

10

Shape Analysis

• DDT and MemPick best known approaches

• Require instrumentation

• Assumptions about when and where data structure operations happen

• No data on stack

11

Shape Analysis

• Probably enough to detect most data structures
• But maybe not reliably

• Does it tell us everything about the data structure?
• Doesn’t tell us about certain semantics and properties
• Ordering?
• Uniqueness?

• Does it tell us if abstraction could be raised?

12

Pattern Matching

• Analyse static structures
• e.g. LLVM IR

• Express patterns or constraints in a DSL or LLVM pass
• e.g. CAnDL idioms

• We can use this to match patterns corresponding to some data structures

13

Other Static Analyses

• Can we detect data structures at syntactic level?

• MLIR?

• GIMPLE?

14

Hybrid

• Can we combine static and dynamic approach?

• Narrow search with static matching

• Use information from static analysis to inform/improve dynamic analysis

15

Current Status

• CAnDL idiom to detect pointer chasing loops

fo r (node = head ; node != NULL ; node = node−>next)

• Successfully detects 3 out of the 5 such loops in data set of 106 programs

• No false positives

16

Property-Based Data Structure Library

• Inspired by Scala collections library, we have Scale, a C++ property-based data
structure library

• Expresses data structures in terms of properties, rather than implementation detail.

• e.g. ordering, access, append complexity etc.

s c a l e : : C o l l e c t i o n <Proper ty1 , Proper ty2 , . . . > c o l l e c t i o n { s i z e } ;

17

Property-Based Data Structure Library

18

Property-Based Data Structure Library

19

Property-Based Data Structure Library

• Operations on Scale use functional paradigm

• map, reduce, zip etc.

• These will also act as parallel skeleton library

20

Graph analytics

• Looking to extend Scale to support graph analytics

• There are many competing graph libraries

• Significant activity in the field

• We want a solution which will detect graphs in many existing libraries

21

Graph analytics

• Graph Scale is currently looking like the Boost Graph Library

• BGL allows specifying graphs based on properties or traits

• Leaves a lot to be desired

22

Code Generation

• Nothing really exciting planned here yet

• Should be fairly straightforward mapping from detected data type to Scale

23

Code Generation. . . .?

• Maybe program synthesis?

24

Summary

• Data-Centric Parallelisation aims to parellelise by focussing on data structures and
raising the level of abstraction.

• Developing static/dynamic data structure detection

• We have started developing Scale, a property-based data structure library.

• Vision is for legacy code to be automatically lifted into Scale.

25

	Intro
	Data Structure Detection
	Data Structure Library
	Code Generation
	Outro

