Data-Centric Parallelisation

Magnus Morton, Zhibo Li, Bjérn Franke
3rd December 2020

Overview

e "Traditional" auto-parallelisation tools are code-centric
e Ignore context of whole program

e Struggles on pointer-chasing or control-flow heavy programs

e Can we use whole program context?

e Can we replicate a human expert?

Data-Centric Parallelisation

e Data-Centric Parallelisation (DCP) project aims to do so
e We want to develop a data-first paradigm for parallelisation

e Raise the level of abstraction of existing data structures

Motivating Example

e Consider a program that traverses and increments each element of a linked list

struct node xcurr = list;

while (curr != NULL) {
curr—>value++;
curr = curr—>next;

e This is not parallelisable by traditional parallelising compiler

e We can see that it trivially parallelisable

Motivating Example

e Our linked list could easily be swapped for an array, or even a set if we know
ordering and uniqueness constraints

std ::set<int> list;
for (autod& v: list) {
v+,

Motivating Example

e Program is now trivially parallelisable

e Either by automatic tool, or by using parallel library
e Program is also modernised

e DCP seeks to do this automatically

Preliminary Work

e Early work suggests that this sort of approach can give 3.5x - 980x speedups

e This is just by lifting to st1 data structures

DCP Overview

DCP is formed of 3 components

Data structure detection

Property-based data structure library

A code generation tool

Data Structure Detection

We need to detect exisiting use of data structures

Not just the exact data structure used, but the most abstract

What complexity do they want for access/insert/delete etc.?

Does ordering matter?

What the programmer wrote may not be what they actually want or need

Shape Analysis

e Dynamic analyis
e Pointer-based analysis

e Looking at "shape" of data structure on heap

10

Shape Analysis

DDT and MemPick best known approaches

Require instrumentation

Assumptions about when and where data structure operations happen

No data on stack

11

Shape Analysis

e Probably enough to detect most data structures
e But maybe not reliably
e Does it tell us everything about the data structure?

e Doesn't tell us about certain semantics and properties
e Ordering?
e Uniqueness?

e Does it tell us if abstraction could be raised?

12

Pattern Matching

e Analyse static structures
e eg. LLVM IR

e Express patterns or constraints in a DSL or LLVM pass
e e.g. CAnDL idioms

e We can use this to match patterns corresponding to some data structures

13

Other Static Analyses

e Can we detect data structures at syntactic level?
e MLIR?
e GIMPLE?

14

e Can we combine static and dynamic approach?
e Narrow search with static matching

e Use information from static analysis to inform/improve dynamic analysis

15

Current Status

e CAnDL idiom to detect pointer chasing loops

for (node = head ; node != NULL ; node = node—>next)

e Successfully detects 3 out of the 5 such loops in data set of 106 programs

e No false positives

16

Property-Based Data Structure Library

e Inspired by Scala collections library, we have Scale, a C++ property-based data
structure library

e Expresses data structures in terms of properties, rather than implementation detail.

e e.g. ordering, access, append complexity etc.

scale:: Collection <Propertyl, Property2, ... > collection{size};

17

Property-Based Data Structure Library

18

Property-Based Data Structure Library

es No
No s

Yes

19

Property-Based Data Structure Library

e Operations on Scale use functional paradigm
e map, reduce, zip etc.

e These will also act as parallel skeleton library

20

Graph analytics

Looking to extend Scale to support graph analytics

e There are many competing graph libraries

Significant activity in the field

We want a solution which will detect graphs in many existing libraries

21

Graph analytics

e Graph Scale is currently looking like the Boost Graph Library
e BGL allows specifying graphs based on properties or traits

e Leaves a lot to be desired

22

Code Generation

e Nothing really exciting planned here yet
e Should be fairly straightforward mapping from detected data type to Scale

23

Code Generation. ...?

e Maybe program synthesis?

24

Data-Centric Parallelisation aims to parellelise by focussing on data structures and

raising the level of abstraction.

Developing static/dynamic data structure detection

e We have started developing Scale, a property-based data structure library.

Vision is for legacy code to be automatically lifted into Scale.

25

	Intro
	Data Structure Detection
	Data Structure Library
	Code Generation
	Outro

