
Debugging 
Unikernel Operating 

Systems

Kareem Ahmad, Alan Dearle, Jon Lewis, Ward Jaradat
School of Computer Science

University of St Andrews

Email: kareemahmad@protonmail.com



Overview
• In this talk we report on an 

undergraduate led project to develop debugger 
for unikernels running on Xen.

• Unikernels are challenging to debug as there are 
not many production ready debuggers for 
unikernels.

• Specifically, we focused on debugging support for 
the Stardust unikernel.

• This work is applicable to any unikernel written in 
C and hosted on Xen.

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 3



What Is A Unikernel?
• Specialised Operating System that runs directly 

above the Hypervisor (such as Xen)
• Single image that contains the OS, an application 

plus any required libraries
• Small image size (400KB including application)
• Fast to boot
• Fast to deploy
• Fast to provision

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 4



Hardware

Xen

What is Xen?

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 5

Dom0 DomU DomU



The Problem
• Unikernels are difficult to debug:
• The kernel and the application are compiled into 

a single image requiring embedded support.
• An independent debugging context is needed in 

order to provide isolation and the ability to stop 
and start the Operating System.

• Unikernels may not be designed for 
compatibility with conventional debugging tools 
like gdb

• Gdb commonly makes use of Unix process 
structures, ptrace, and library calls

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 6



Approach
• The approach taken was based on xendbg

developed at Nccgroup by Michael Spencer
• Algorithms and techniques used by Duster and 

xendbg are very similar.
• Duster focused on allowing the developer to 

use source-level constructs during debugging
• Uses Xen's Virtual Machine Introspection API 

for interacting with the Unikernel
• Written in C and Go
• Uses standard DWARF file format to get 

symbolic information (e.g. variables)

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 7



Demo Code (kernel.c)

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 8



(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 9



Hardware
Xen

Explanation

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 10

Duster
(Dom0)

Stardust 
State: Paused

Control

We assume for the explanation 
that kernel.c:60 is 0x80 and 
Stardust starts running at 
0x0 (which of course it doesn’t)



Hardware
Xen

Explanation

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 11

Duster
(Dom0)

Stardust 
State: Paused

Control

Put domain into debug mode



Hardware
Xen

Explanation

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 12

Duster
(Dom0)

Stardust 
State: Paused

Control

Program Counter: 0x0

Set breakpoint:
Write int3
to 0x80
Using VMI API



Hardware
Xen

Explanation

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 13

Duster
(Dom0)

Stardust 
State: Paused

Control

Program Counter: 0x0

Unpause domain



Hardware
Xen

Explanation

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 14

Duster
(Dom0)

Stardust 
State: Running

Control

Program Counter: 0x0

Duster is busy waiting for 
Stardust to go into paused
mode



Hardware
Xen

Explanation

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 15

Duster
(Dom0)

Stardust 
State: Running

Control

Program Counter: 0x80

Stardust in debug mode. 
In debug mode interrupts 
cause domain to be paused

1. Hit int3 instruction
2. Pause domain



Hardware
Xen

Explanation

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 16

Duster
(Dom0)

Stardust 
State: Paused

Control

Program Counter: 0x80



Demo Code

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 18



Reading Variables From Memory

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 19



Conclusions
• We have extended the Xendbg code to support the 

debugging of high level (C) programming language 
code x86-64 Para-virtualised unikernels

• Without this (we at least) had no debug support
• Does not support some GDB operations including 

writing to memory, stack frame analysis
• But can:
• Set and remove breakpoints on the source level
• Step through code line at a time
• Read memory using symbolic names
• Pretty print memory based on C types

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 21



Links
• Xendbg: https://github.com/SpencerMichaels/xen

dbg
• Duster: https://github.com/StardustOS/duster
• Stardust: https://github.com/StardustOS
• Stardust 

(docs): https://stardustos.gitbook.io/docs/
• Slides: https://tinyurl.com/yxq9w6tz

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 22

https://github.com/SpencerMichaels/xendbg
https://github.com/StardustOS/duster
https://github.com/StardustOS
https://stardustos.gitbook.io/docs/

