Debugging
Unikernel Operating
Systems

Kareem Ahmad, Alan Dearle, Jon Lewis, Ward Jaradat

School of Computer Science

University of St Andrews

Email: kareemahmad@protonmail.com




Overview

* [In this talk we report on an
undergraduate led project to develop debugger
for unikernels running on Xen.

e Unikernels are challenging to debug as there are
not many production ready debuggers for

unikernels.

e Specifically, we focused on debugging support for
the Stardust unikernel.

* This work is applicable to any unikernel written in
C and hosted on Xen.




What Is A Unikernel?

e Specialised Operating System that runs directly
above the Hypervisor (such as Xen)

* Single image that contains the OS, an application
plus any required libraries

* Small image size (400KB including application)
* Fast to boot
* Fast to deploy

* Fast to provision



What is Xen?

Hardware

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 5



The Problem

* Unikernels are difficult to debug:

 The kernel and the application are compiled into
a single image requiring embedded support.

 An independent debugging context is needed in

order to provide isolation and the ability to stop
and start the Operating System.

* Unikernels may not be designed for
compatibility with conventional debugging tools
like gdb

* Gdb commonly makes use of Unix process
structures, ptrace, and library calls



Approach

The ap
develo

Algorit

oroach taken was based on xendbg
oed at Nccgroup by Michael Spencer

nms and techniques used by Duster and

xendbg are very similar.

Duster

focused on allowing the developer to

use source-level constructs during debugging

Uses Xen's Virtual Machine Introspection API
for interacting with the Unikernel

Written in C and Go

Uses standard DWAREF file format to get
symbolic information (e.g. variables)




Demo Code (kernel.c)

void demo() {
int my_integer
float my_float
for (int 1 = 0;
printf("w
my_integer +
my_float +=

+

}
bool my_boolean true;

struct test xpointer_tester;

pointer_tester = malloc(sizeof(struct test));
pointer_tester->val = 20;

pointer_tester->no = 0.110;
pointer_tester->my_pointer |
printf("%d\n", pointer_tester- >va1)ﬂ

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com)




erminal ¥

mka@fernanda: ~/workspace/stardust/src

$ sudo x1 create -p stardust.conf I - $ sudo duster -path=stardust.gz id:]




Explanation

We assume for the explanation
that kernel.c:60 is 0x80 and
Stardust starts running at

0x0 (which of course it doesn’t)

Stardust
State: Paused

Xen

Hardware

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com)

10



Explanation

Stardust
> State: Paused

Put domain into debug mode

Xen

Hardware

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 11



Explanation

Set breakpoint:
Write int3
to 0x80

Using VMI API Stardust
State: Paused

Program Counter: 0x0

Xen

Hardware

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 12



Explanation

Stardust
State: Paused

Unpause domain

Program Counter: 0x0

Xen

Hardware

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 13



Explanation

Control

Duster is busy waiting for
Stardust to go into paused
mode

Stardust
State: Running

Program Counter: 0x0

Xen

Hardware

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 14



Explanation

Control

Stardust in debug mode.
In debug mode interrupts
cause domain to be paused

1. Hitint3 instruction Stardust
2. Pause domain State: Running

Program Counter: 0x80

Xen

Hardware

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 15



Explanation

Control

Stardust
State: Paused

Program Counter: 0x80

Xen

Hardware

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com) 16



Demo Code

void demo() {
int my_integer
float my_float
for (int 1 = 0;
printf("w
my_integer +
my_float +=

+

}
bool my_boolean true;

struct test xpointer_tester;

pointer_tester = malloc(sizeof(struct test));
pointer_tester->val = 20;

pointer_tester->no = 0.110;
pointer_tester->my_pointer |
printf("%d\n", pointer_tester- >va1)ﬂ

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com)




Activities

start_info
nr_pages
shared_inf
pt_base
mod_start

memory layout
_text
_etext
_edata

stack start :

_end
pt_base

& Terminal v

:» 0000000000239000
: 131072

» 50892000

:» 000000000023¢000
: Ox0

' 0

: 0x0

: 0000000000134000

: 0000000000000000
: 000000000001e288
: 0000000000029260
0000000000134000
: 0000000000138530
: 000000000023c000

nr_pt_frames: 5

nr_pages
mfn_list
store_addr
pfn_to_mfn
nfn_to_pfn
hyp_start
hyp_end
free_pfn
max_pfn
Demand map pfns
We are on the 0
We are on the 1
We are on the 2

+ 131072

: 0000000000139000
: 0000000000232000
: 0000000000139000
+ ffff800000000000
: ffff800000000000
: ffff880000000000
+ 244 (580)

+ 20000 (131072)

ka@fernanda: ~/workspace/stardust/s

-0000000000138000

134 (308)

23c (572)

23a (576)
139 (313)

at 100000000000~-108000000000.
iteration of the loop
iteration of the loop
iteration of the loop

5Dec 13:48

C|

: $ sudo duster -path=stardust -1d=23
Welcome to Duster!

>break kernel.c:73

Break point set @ kernel.c:73
>continue

/home /mka/workspace/stardust/src/kernel.c:73 printf("%d\n", pointer_tester->val);

break Sets a break point at in a file (argument in the form of file.c:<line no>
step Steps forward one line (note a breakpoint must be set before hand)
(AN Continue to the next breakpoint

quit Exit the debugger

read Read a variable

der Deference a variable

(C) Kareem Ahmad 2020 (kareemahmad@protonmail.com)




Conclusions

 We have extended the Xendbg code to support the
debugging of high level (C) programming language
code x86-64 Para-virtualised unikernels

e Without this (we at least) had no debug support

* Does not support some GDB operations including
writing to memory, stack frame analysis

* But can:
* Set and remove breakpoints on the source level
* Step through code line at a time
* Read memory using symbolic names
* Pretty print memory based on C types



Links

* Xendbg: https://github.com/SpencerMichaels/xen
dbg
* Duster: https://github.com/StardustOS/duster

e Stardust: https://github.com/StardustOS

e Stardust
(docs): https://stardustos.gitbook.io/docs/

 Slides: https://tinyurl.com/yxq9w6tz

(C) Kareem Ahmad 2020 (kareema hmad@protonmail.com) 22


https://github.com/SpencerMichaels/xendbg
https://github.com/StardustOS/duster
https://github.com/StardustOS
https://stardustos.gitbook.io/docs/

