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Heterogeneity Trends: Integration

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educational purposes.

Same 
machine

Same 
chip

AMD

From my old slide sets (2013) …



AMD
Heterogeneity Trends: Specialization

Special 
purpose

Special 
purpose and 
general 
purpose

Fully 
general 
purpose

OS-capable

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educational purposes.

From my old slide sets (2013) …



Popcorn Linux and Compiler Framework 
Project
• Started at Virginia Tech, Blacksburg, VA, mid-2012

• Binoy Ravindran, Antonio Barbalace

• Targets platforms with multiple groups of general-purpose processing units
• Non-cache-coherent
• Microarchitectural or ISA heterogenous

• Initial goal
• Extend the multiple kernel OS design (Barrelfish) to Linux
• Provide the same OS and programming environment among processing units

• OS and compiler provide SMP functionalities on non-SMP platforms

Was that worth? How to do that?



Today’s Wildly Heterogenous Hardware 
Example 
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Lesson 1: Processing units' 
heterogeneity is here to 

stay, but no cache-
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Popcorn Design
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Classic Software for Heterogeneous Hardware

• Software runs on CPUs
• Other processing units 

cannot run the same 
software as the CPUs

• Programmer (strictly) 
partitions the application 

• Each partition runs only 
on a predefined 
processing unit

• Supporting drivers, 
runtime, compilers
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What Are the Problems?

• For each hardware component 
• Modify all software layers 

• Nightmare for application’s programmers
• Hard to program 

• Difficult to port to a new platform

• Poor resource utilization (performance, energy efficiency, 
determinism)
• One programmer focuses on one application

• Many applications run at the same time



New Software for Heterogeneous Hardware
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all processing units

• The compiler builds 
applications software to 
run among all 
processing units

• The runtime supports 
all processing units

• Programmers don’t 
have to partition the 
application, which may 
run everywhere, 
transparently
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Popcorn Linux

• Runtime
• Runtime ISA execution migration

• State transformation

• Based on musl C library

• Compiler Framework 
• Offline analysis

• Model-based code optimization

• One binary per ISA
• Based on gcc/LLVM

• Replicated-kernel Operating System
• One kernel per ISA
• Distributed systems services

• Single system Image

• Based on Linux
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Popcorn Linux – Operating System

ISA B
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Linux krn0

• Single System Image
• Based on Popcorn namespaces (NS)
• Creates a single operating environment

• Migrating app sees the same OS

• Extends Linux namespaces

• Distributed OS Services
• Task (thread and process) migration

• Native code migration

• Distributed memory management (DSM)
• Distributed file system

• Inter-kernel Communication Layer
• Performance critical component

• low-latency and high-throughput

• Exclusively kernel-space
• Single format among ISAs
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Popcorn Linux – Task Migration

• Process Migration

• Whole application is transferred
• All threads, user- & kernel-state

• No dependecies are left on the 
origin kernel
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• Thread Migration

• Selected threads are transferred
• Threads' state is transferred

• Kernels coordinate to maintain 
application state consistent 



Popcorn Linux – Thread Migration’s DSM

• Replicated virtual address space 

• Kept consistent among kernels 

• Page coherency protocol
• Based on Modified-Shared-Invalid 

(MSI) cache coherency protocol
• Memory page granularity instead 

of cache line granularity
• Additional states to improve 

performance
• Scaled from two kernels to 

multiple kernels



Popcorn Linux – Compiler/Runtime

• Profiler
• Performance and power profiles
• Function and sub-function granularity
• Output performance and power code 

indicators 
• Affinity estimations with cost model

• Compiler Toolchain
• Output heterogenous-ISA binary 

(native)
• Common address space (including TLS)
• Insert migration points (fun boundaries)
• Add state transformation metadata

• Runtime Framework
• Support task migration
• Implements state transformation

• Stack-transformation (rewriting)
• Register-transformation
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Popcorn Linux – Compiler

• Produces program binaries for each ISA
• Common address space

• Common type system

• Each symbol at same virtual address on any ISA

• No address space conversion!

• Common thread-local storage (TLS) layout   
• x86_64 layout forced

• No TLS conversion!

• Migration points
• Cannot migrate at any instruction

• State-transformation meta-data in binaries 
• E.g., var properties, stack frame offsets
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Popcorn Linux – Runtime
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Popcorn Linux Results

[2] “Breaking the Boundaries in Heterogeneous-ISA Datacenters” A. 
Barbalace et al., ASPLOS '17

• Ease programmability 
• Enable portability (and legacy support)
• Improve resource utilization

• Runtime decisions (vs static)
• On heterogeneous-ISA [1]

• Up to 3.5x more performant 
than other heterogeneous 
frameworks

• On fully heterogeneous-ISA [2]
• Up to 66% better energy 

consumption for bursty arrivals

[1] “Bridging the Programmability Gap in Heterogeneous-ISA Platforms” 
A. Barbalace et al., EuroSys '15

Homogeneous System Heterogeneous System

66%
30%



First 5 years of the project in Summary

• Gigantic Engineering Effort

• Operating Systems 
• Multiple kernels Linux
• Repurpose monolithic Linux kernel as a message-passing kernel 
• Convert Linux’s subsystems from SHM to SHM+message-passing

• Compiler/Linker 
• Common address space layout, per-ABI stack layout
• Compile into different ISA binaries with LLVM/gold 
• Insert equivalence points at which stacks can be converted 

(stackmaps)

• Runtime Library
• Extended standard library (based on muslc)
• Provide “builtin” functions to convert and migrate at eq points

Lesson 3: instead of Linux, 
Darwin or DragonFly BSD may 

have reduced development time

Lesson 4: LLVM as a cross-
compiler saved a lot of time, and 
muslc supports a large amount 

of apps

Lesson 2: very complex to build 
and debug because 

development affects several 
software layers



Feedback from Industry and Academia #1

• Constraining dependencies
• Need application source-code

• Eventual code modifications

• and compiler script rewriting

• Must use Popcorn Linux Compiler Framework
• Specific version of LLVM

• Specific version of musl C library

• Must use Popcorn Linux kernel
• Few kernel versions and CPU architectures supported

• Limited POSIX support
• Not all Linux subsystems supported

Lesson 6: impossible to keep up 
with upstream developments –

fix one version

Lesson 5: for production apps, 
that use hacks for performance, 
transparency is hard to provide

Lesson 7: adding a new  CPU 
architecture may be 

incompatible with previous 
assumptions (32bit?)

Lesson 8: cannot support all 
Linux subsytems, need 

automatic way to convert 
subsystems into SHM+MSG



Feedback from Industry and Academia #2

• Limiting factors
• Not well integrated in the Linux kernel nor in LLVM

• Requires Linux kernel patching
• Requires LLVM patching

• Doesn’t support dynamically compiled code
• Including JIT, self-modifying, etc.
• E.g., Java, .NET

• Restricted library support
• Doesn’t support dynamic libraries
• Cannot migrate in library-code (if not recompiled)

• Supports application/container migration
• Doesn’t generalize to VMs

Lesson 9: Implement 
functionalities in modules or 
plugins to minimize patching

Lesson 10: for dynamically 
compiled code, need to control 

the way code is generated

Lesson 11: a more generic 
techniques is needed to runtime 
migration among VMs (Popcorn 
relies on the syscall abstraction)

Lesson 12: 
containers/namespaces nice 

abstraction for migration

List continues …



The latest 2+ years …

• Keep evolving Popcorn

amd64 +aarch64 
Heterogeneous Popcorn 

Linux with compiler

amd64 +aarch64 +arm
Heterogeneous Popcorn 

Linux with compiler
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Heterogeneous Popcorn 

Linux with compiler

amd64 +aarch64 
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Linux (DSM++) with 
compiler for clusters

amd64 +aarch64 
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unikernels with compiler 
and checkpoint/restart

amd64 +aarch64 
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Linux/KVM with compiler 
for clustersamd64 +aarch64 

Heterogenous Popcorn 
CRIU with automatic 

compiler

~2017

Under Development

HEXO

H-Containers



HEterogeneous eXecution Offloading
HEXO #1
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HEterogeneous eXecution Offloading
HEXO #2
• HEXO migrates at runtime compute-

intensive background jobs
• From fast & expensive x86-64 

servers to slow and cheap ARM64 
embedded boards
• Uses Popcorn state transformation
• Lightweight VMs (unikernels) as unit of 

execution

• Slowdown from running on the 
board is highly variable
• Profiles jobs at runtime on the server
• Offloads the ones with the smallest 

estimated slowdown

ARM64

x86-64



H-Containers
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• Runtime
• OS Process-level 

Checkpoint/Restart
• Based on CRIU and Popcorn 
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• Transpiler Framework
• Binary decompiled to LLVM IR
• LLVM IR to per-ISA Binary
• Based on McSema/Remill and 

Popcorn Compiler (LLVM)

• Vanilla Operating System
• Based on Linux, Linux containers

• Namespaces, cgroups
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H-Container – Runtime
Checkpoint/Restart Migration
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H-Containers – Transpiler
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Summary

• Computing platforms with multiple groups of processing units are here to stay
• Non cache-coherent
• Microarchitectural or ISA heterogeneous

• Can be programmed as (homogenous) SMP platforms – hence, easily!
• By means of new systems software (Popcorn Linux and Co)

• Common OS interface and transferrable OS state
• Common address space layout and format/type/padding

• Transforming how we are building software today
• Tested on open-source real-world system software

• Several lessons learned in the process
• We are not in the early days of computing – gigantic amount of work to modifying all SW layers

• Hard to keep up with upstream developments
• etc.

abarbala@ed.ac.uk
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