
Popcorn Linux OS and Compiler
Framework:
lessons from 7 years of research,
development, and deployments
Antonio Barbalace, Pierre Olivier, Binoy Ravindran

Heterogeneity Trends: Integration

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educational purposes.

Same
machine

Same
chip

AMD

From my old slide sets (2013) …

AMD
Heterogeneity Trends: Specialization

Special
purpose

Special
purpose and
general
purpose

Fully
general
purpose

OS-capable

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educational purposes.

From my old slide sets (2013) …

Popcorn Linux and Compiler Framework
Project
• Started at Virginia Tech, Blacksburg, VA, mid-2012

• Binoy Ravindran, Antonio Barbalace

• Targets platforms with multiple groups of general-purpose processing units
• Non-cache-coherent
• Microarchitectural or ISA heterogenous

• Initial goal
• Extend the multiple kernel OS design (Barrelfish) to Linux
• Provide the same OS and programming environment among processing units

• OS and compiler provide SMP functionalities on non-SMP platforms

Was that worth? How to do that?

Today’s Wildly Heterogenous Hardware
Example

CPUCPUCPUCPU

MemoryMemory

CPU

MemoryMemoryMemory

CPU

DiskNetwork Disk

Memory

MemoryMemoryMemoryMemory

Memory

MemoryTPU

Accel
X

GPU

Memory NPU MemorySPU

MPU

GPU
Accel

X
TPU

Lesson 1: Processing units'
heterogeneity is here to

stay, but no cache-
coherent memories

Popcorn Design

CPUCPUCPUCPUDPU NPU GPU TPU
Accel

X
SPU

Middleware

Application

System
Software

MPU

Middleware

Application

Operating System Kernel
(OS krn)

OS
part

OS
part

OS
part

FW
OS
krn

RuntimeCompiler

OS
rtm

Same
interface

Program like SMP
don’t care about heterogeneity

Multiple
communicating
OS krn/rtm/FW

Why and how?

Classic Software for Heterogeneous Hardware

• Software runs on CPUs
• Other processing units

cannot run the same
software as the CPUs

• Programmer (strictly)
partitions the application

• Each partition runs only
on a predefined
processing unit

• Supporting drivers,
runtime, compilers

CPUCPUCPUCPU

System
Software

Middleware

Application

GPU
Accel

X

Drv Drv
Drv

Drv

Drv

Drv

Runtime

Compiler

DPU

App App Func

What Are the Problems?

• For each hardware component
• Modify all software layers

• Nightmare for application’s programmers
• Hard to program

• Difficult to port to a new platform

• Poor resource utilization (performance, energy efficiency,
determinism)
• One programmer focuses on one application

• Many applications run at the same time

New Software for Heterogeneous Hardware

CPUCPUCPUCPU GPU
Accel

X

• The OS extends among
all processing units

• The compiler builds
applications software to
run among all
processing units

• The runtime supports
all processing units

• Programmers don’t
have to partition the
application, which may
run everywhere,
transparently

Middleware

Application

System
Software

DPU

Operating System Kernel
(OS krn)

OS
part

OS
krn

OS
krn

Middleware

Application

RuntimeCompiler

Popcorn Linux

• Runtime
• Runtime ISA execution migration

• State transformation

• Based on musl C library

• Compiler Framework
• Offline analysis

• Model-based code optimization

• One binary per ISA
• Based on gcc/LLVM

• Replicated-kernel Operating System
• One kernel per ISA
• Distributed systems services

• Single system Image

• Based on Linux

cpu1

Linux krn0

cpu0

ISA B
ARM

ISA A
x86

cpu1

Linux krn0

cpu0 cpu2 cpu3

Linux krn1

Single System Image

Het-ISA Application Binary

Application State

Source
Code

Analyzed
Source

Per-ISA
Code

ISA a ISA A specific
code

ISA B specific
code

runtime
migration

Popcorn Linux – Operating System

ISA B
ARM

Linux krn0

• Single System Image
• Based on Popcorn namespaces (NS)
• Creates a single operating environment

• Migrating app sees the same OS

• Extends Linux namespaces

• Distributed OS Services
• Task (thread and process) migration

• Native code migration

• Distributed memory management (DSM)
• Distributed file system

• Inter-kernel Communication Layer
• Performance critical component

• low-latency and high-throughput

• Exclusively kernel-space
• Single format among ISAs

Popcorn Communication Layer

ISA A
x86

Linux krn0 Linux krn1

PCIe
TCP/IP
RDMA
etc.

Popcorn
Services

Popcorn
Services

Single System Image

Popcorn NS Popcorn NS

Popcorn Linux – Task Migration

• Process Migration

• Whole application is transferred
• All threads, user- & kernel-state

• No dependecies are left on the
origin kernel

cpu1

krn0

cpu0

services krn1

cpu2 cpu3

Single System Image

Application

t1

t2 t3

cpu1

krn0

cpu0

services krn1

cpu2 cpu3

Single System Image

Application

t1

t2 t3

services

Application

t1

t2 t3

cpu1

krn0

cpu0

services krn1

cpu2 cpu3

Single System Image

Application

t1

t2 t3

cpu1

krn0

cpu0

krn1

cpu2 cpu3

Single System Image

Application

t1

t2 t3

services

t2 t3

• Thread Migration

• Selected threads are transferred
• Threads' state is transferred

• Kernels coordinate to maintain
application state consistent

Popcorn Linux – Thread Migration’s DSM

• Replicated virtual address space

• Kept consistent among kernels

• Page coherency protocol
• Based on Modified-Shared-Invalid

(MSI) cache coherency protocol
• Memory page granularity instead

of cache line granularity
• Additional states to improve

performance
• Scaled from two kernels to

multiple kernels

Popcorn Linux – Compiler/Runtime

• Profiler
• Performance and power profiles
• Function and sub-function granularity
• Output performance and power code

indicators
• Affinity estimations with cost model

• Compiler Toolchain
• Output heterogenous-ISA binary

(native)
• Common address space (including TLS)
• Insert migration points (fun boundaries)
• Add state transformation metadata

• Runtime Framework
• Support task migration
• Implements state transformation

• Stack-transformation (rewriting)
• Register-transformation

Source
Code

Analyzed
Source

Profiler

Per-ISA
Code

ISA a

Compiler
Toolchain

ISA B
ARM

ISA A
x86

Het-ISA Application Binary

Application State

runtime
migration

ISA A specific
code

ISA B specific
code

Runtime
Framework

Popcorn Linux – Compiler

• Produces program binaries for each ISA
• Common address space

• Common type system

• Each symbol at same virtual address on any ISA

• No address space conversion!

• Common thread-local storage (TLS) layout
• x86_64 layout forced

• No TLS conversion!

• Migration points
• Cannot migrate at any instruction

• State-transformation meta-data in binaries
• E.g., var properties, stack frame offsets

ISA A
x86

ISA B
ARM

(Merged) Virtual

Address Space

Program
Binary

Popcorn Linux – Runtime

x86_64 Stack aarch64 Stack

aarch64 Register State

x86_64 Register State

Stack Transformation

Popcorn Linux Results

[2] “Breaking the Boundaries in Heterogeneous-ISA Datacenters” A.
Barbalace et al., ASPLOS '17

• Ease programmability
• Enable portability (and legacy support)
• Improve resource utilization

• Runtime decisions (vs static)
• On heterogeneous-ISA [1]

• Up to 3.5x more performant
than other heterogeneous
frameworks

• On fully heterogeneous-ISA [2]
• Up to 66% better energy

consumption for bursty arrivals

[1] “Bridging the Programmability Gap in Heterogeneous-ISA Platforms”
A. Barbalace et al., EuroSys '15

Homogeneous System Heterogeneous System

66%
30%

First 5 years of the project in Summary

• Gigantic Engineering Effort

• Operating Systems
• Multiple kernels Linux
• Repurpose monolithic Linux kernel as a message-passing kernel
• Convert Linux’s subsystems from SHM to SHM+message-passing

• Compiler/Linker
• Common address space layout, per-ABI stack layout
• Compile into different ISA binaries with LLVM/gold
• Insert equivalence points at which stacks can be converted

(stackmaps)

• Runtime Library
• Extended standard library (based on muslc)
• Provide “builtin” functions to convert and migrate at eq points

Lesson 3: instead of Linux,
Darwin or DragonFly BSD may

have reduced development time

Lesson 4: LLVM as a cross-
compiler saved a lot of time, and
muslc supports a large amount

of apps

Lesson 2: very complex to build
and debug because

development affects several
software layers

Feedback from Industry and Academia #1

• Constraining dependencies
• Need application source-code

• Eventual code modifications

• and compiler script rewriting

• Must use Popcorn Linux Compiler Framework
• Specific version of LLVM

• Specific version of musl C library

• Must use Popcorn Linux kernel
• Few kernel versions and CPU architectures supported

• Limited POSIX support
• Not all Linux subsystems supported

Lesson 6: impossible to keep up
with upstream developments –

fix one version

Lesson 5: for production apps,
that use hacks for performance,
transparency is hard to provide

Lesson 7: adding a new CPU
architecture may be

incompatible with previous
assumptions (32bit?)

Lesson 8: cannot support all
Linux subsytems, need

automatic way to convert
subsystems into SHM+MSG

Feedback from Industry and Academia #2

• Limiting factors
• Not well integrated in the Linux kernel nor in LLVM

• Requires Linux kernel patching
• Requires LLVM patching

• Doesn’t support dynamically compiled code
• Including JIT, self-modifying, etc.
• E.g., Java, .NET

• Restricted library support
• Doesn’t support dynamic libraries
• Cannot migrate in library-code (if not recompiled)

• Supports application/container migration
• Doesn’t generalize to VMs

Lesson 9: Implement
functionalities in modules or
plugins to minimize patching

Lesson 10: for dynamically
compiled code, need to control

the way code is generated

Lesson 11: a more generic
techniques is needed to runtime
migration among VMs (Popcorn
relies on the syscall abstraction)

Lesson 12:
containers/namespaces nice

abstraction for migration

List continues …

The latest 2+ years …

• Keep evolving Popcorn

amd64 +aarch64
Heterogeneous Popcorn

Linux with compiler

amd64 +aarch64 +arm
Heterogeneous Popcorn

Linux with compiler

amd64 +aarch64 +ppc64
Heterogeneous Popcorn

Linux with compiler

amd64 +aarch64
Heterogeneous Popcorn

Linux (DSM++) with
compiler for clusters

amd64 +aarch64
Heterogeneous Popcorn
unikernels with compiler
and checkpoint/restart

amd64 +aarch64
Heterogeneous Popcorn

Linux/KVM with compiler
for clustersamd64 +aarch64

Heterogenous Popcorn
CRIU with automatic

compiler

~2017

Under Development

HEXO

H-Containers

HEterogeneous eXecution Offloading
HEXO #1

cpu1

Linux krn0

cpu0

ISA B
ARM

ISA A
x86

cpu1

Hypervisor

cpu0 cpu2 cpu3

Hypervisor

VM

• Runtime
• Unikernel-level checkpoint
• libOS code is per-ISA

• Substituted at runtime

• Compiler Framework
• One binary per ISA

• Including libOS

• Based on gcc/LLVM

• Migration-aware Hypervisor
• One hypervisor per ISA
• Migration service

• Aware of the migrating unikernel

• Based on Linux/KVM

runtime
migration

VM

Het-ISA Unikernel Binary

Unikernel State

Single-ISA
Binary

Per-ISA
Binary

ISA a ISA A specific
code

ISA B specific
code

LLVM IR

HEterogeneous eXecution Offloading
HEXO #2
• HEXO migrates at runtime compute-

intensive background jobs
• From fast & expensive x86-64

servers to slow and cheap ARM64
embedded boards
• Uses Popcorn state transformation
• Lightweight VMs (unikernels) as unit of

execution

• Slowdown from running on the
board is highly variable
• Profiles jobs at runtime on the server
• Offloads the ones with the smallest

estimated slowdown

ARM64

x86-64

H-Containers

cpu1

Linux krn0

cpu0

ISA B
ARM

ISA A
x86

cpu1

Linux krn0

cpu0 cpu2 cpu3

Linux krn1

System Image

• Runtime
• OS Process-level

Checkpoint/Restart
• Based on CRIU and Popcorn

Runtime (muslc-based)

• Transpiler Framework
• Binary decompiled to LLVM IR
• LLVM IR to per-ISA Binary
• Based on McSema/Remill and

Popcorn Compiler (LLVM)

• Vanilla Operating System
• Based on Linux, Linux containers

• Namespaces, cgroups

runtime
migration

System Image

Het-ISA Application Binary

Application State

Single-ISA
Binary

Per-ISA
Binary

ISA a ISA A specific
code

ISA B specific
code

LLVM IR

H-Container – Runtime
Checkpoint/Restart Migration

Origin Machine (ISA A) Destination Machine (ISA A)

App

C
h

e
ckp

o
in

t

Tran
sfe

r

R
e

sto
re

Image
Files
Image
Files
Image
Files
Image
Files
Image

File

ContainerContainer

App

Image
Files
Image
Files
Image
Files
Image
Files
Image

File

(Application state) (Application state)

Origin Machine (ISA A) Destination Machine (ISA B)

App

N
o

tify*

C
h

e
ckp

o
in

t

Tran
sfo

rm
*

Tran
sfe

r

R
e

sto
re

App

Image
Files
Image
Files
Image
Files
Image
Files
Image

File

Image
Files
Image
Files
Image
Files
Image
Files
Image

File

ContainerContainer

*New Components

(Application state) (Application state)

H-Containers – Transpiler

Disassembl
er

Lifter Fixer
Migration

Points
Aligner

Compiler
and Linker

New System Software 26

User
Source Code

Non-LLVM
Compiler

LLVM
Compiler

User provided
LLVM IR

LLVM IR

User provided
Binary

H-Container
De-Compiler

Native
Exec

Binary

McSema/Remill

Native
Exec

Binary

H-Container
Compiler

Cross-ISA Migratable
Binaries

Popcorn Compiler

Summary

• Computing platforms with multiple groups of processing units are here to stay
• Non cache-coherent
• Microarchitectural or ISA heterogeneous

• Can be programmed as (homogenous) SMP platforms – hence, easily!
• By means of new systems software (Popcorn Linux and Co)

• Common OS interface and transferrable OS state
• Common address space layout and format/type/padding

• Transforming how we are building software today
• Tested on open-source real-world system software

• Several lessons learned in the process
• We are not in the early days of computing – gigantic amount of work to modifying all SW layers

• Hard to keep up with upstream developments
• etc.

abarbala@ed.ac.uk

mailto:abarbala@ed.ac.uk

