
Temporal graphs capture the development of relationships within data throughout time. This model fits 
naturally within a streaming architecture, where new events can be inserted directly into the graph upon 
arrival from a data source, being compared to related entities or historical state. However, the vast 
majority of graph processing systems only consider traditional graph analysis on static data, with some 
outliers supporting batched updating and temporal analysis across graph snapshots. With this in mind, 
our recent work has been looking at defining a temporal graph model which can be updated via event 
streams and investigating the challenges of distribution and graph maintenance. Some notable 
challenges include partitioning a graph built from a stream, with the additional complexity of managing 
trade-offs between structural locality (proximity to neighbours) and temporal locality (proximity to an 
entities history). Synchronising graph state across the cluster and handling out-of-order updates, without 
a central ground truth limiting scalability. Managing memory constraints and performing analysis in 
parallel with ongoing update ingestion. 
 
To address these challenges, we introduce Raphtory, a system which maintains temporal graphs over a 
distributed set of partitions, ingesting and processing parallel updates in near real-time. Raphtory's core 
components consist of Graph Routers and Graph Partition Managers. Graph Routers attach to a given 
input stream and convert raw data into graph updates, forwarding this to the Graph Partition Manager 
handling the affected entity. Graph Partition Managers contain a partition of the overall graph, inserting 
updates into the histories of affected entities at the correct chronological position. This removes the 
need for centralised synchronisation, as commands may be executed in any given arrival order whilst 
resulting in the same history. To deal with memory constraints, Partition Managers both compress older 
history and set an absolute threshold for memory usage. If this threshold is met a cut-off point is 
established, requiring all updates prior to this time to be transferred to offline storage. Once established 
and ingesting the selected input, analysis on the graph is permitted via Live Analysis Managers. These 
connect to the cluster, broadcasting requests to all Partition Managers who execute the algorithm. 
Analysis may be completed on the live graph, or any point back through its history, with Raphtory 
handling the retrieval of data which has been pushed to disk. Additionally, multiple Analysis Managers 
may operate concurrently on the graph with previously unseen algorithms compiled at run-time, thus 
allowing modification of ongoing analysis without re-ingesting the data. 
 
Raphtory is an ongoing project but has a working version available with all of the above components 
containerised for ease of installation and reproducibility of tests. Much work has also gone into making it 
simple for users to ingest their own data sources, create custom routers and perform their desired 
analysis. The current goals of the project are to expand upon initial testing, including several real world 
uses cases, and to extend the systems API to better enable true temporal analysis. The proposed talk will, 
however, focus predominantly on the developed components to gather feedback on these, with several 
areas of expansion introduced at the end for discussion with those interested. 


