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Why Graphs?
Graphs are a natural way to represent pair-wise relationships 
among objects in the real world

• Each object is a vertex

• Relationship among a pair of objects represented with an edge
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Graph Analytics
Extracting meaningful information out of complex many-to-
many relationships among entities in a graph
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Graph Analytics
Extracting meaningful information out of complex many-to-
many relationships among entities in a graph

 Applications
• Label Propagation 

• Centrality Analysis
- Most influential people and information in social media

• Community Analysis
- Identify customers with similar interests

• Connectivity Analysis
- Find weakness in a network

• Path Analysis
- Route optimization for distribution and supply chain
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Graphs are huge and growing …
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Graphs are huge and growing …

Image Credit: https://techcrunch.com/2017/06/27/facebook-2-billion-users/

Graphs don’t fit in main memory of a single server
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Billions of Vertices
Trillions of Edges 

Memory Footprint in Terabytes
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To Scale-Out
Or

To Scale-Up



Scale-Out Graph Analytics 
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Is scale-out graph analytics a good idea?

GraphX
[OSDI’14]

Pregel
[SIGMOD’10]

PGX.D 
[SC’15]

PowerGraph
[OSDI’12]

GraphLab
[VLDI’12]

PEGASUS
[ICDM’09]

GPS
[SSDBM’13]

GRAM
[SoCC’15]

Gemini
[OSDI’16]



Scale-Out Graph Analytics Not Desirable

In-memory scale-out processing with 10s-100s nodes can 
be outperformed by disk-based scale-up graph processing

[GraphChi OSDI’12]
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So, why not scale-up graph analytics?



Need large per-node memory capacity
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• High cost for large capacity

 Alternative technology for main memory? 

• Emerging solution: Storage Class Memory (SCM)

• Terabytes of capacity at affordable price 
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 Alternative technology for main memory? 

• Emerging solution: Storage Class Memory (SCM)

• Terabytes of capacity at affordable price 

SCM: Enabler for scale-up graph analytics

Image Credit: https://marketrealist.com/2016/03/microns-3d-xpoint-launch-stands-now

SSD



SCM: No Free Lunch
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SCM: No Free Lunch

 2x-4x slower access latency than DRAM

 4x-8x lower bandwidth than DRAM

 Multiple orders of magnitude lower write endurance 
than DRAM
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Implications for scale-up graph analytics



CPI Stack of DRAM based Scale-Up Graph Analytics
Cycles spent in DRAM vs Elsewhere
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DRAM stalls account for 40-65% of total time

SCM will exacerbate the problem



Mitigating Slower Latency of SCM
Data Prefetching for latency hiding

Challenges:

 Graphs exhibit random access patterns

 Simple hardware prefetchers are inadequate for graphs
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Mitigating Slower Latency of SCM
Data Prefetching for latency hiding

Challenges:

 Graphs exhibit random access patterns

 Simple hardware prefetchers are inadequate for graphs

Potential Solutions:

Hardware

 Graph specific hardware prefetcher [Ainsworth et al. ICS’16]

Software

 Employ software prefetcher in the framework
• CPU often idle waiting on memory  Plenty of idle cycles to burn on 

extra instructions
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Mitigating Lower Bandwidth of SCM

 Data transfer between DRAM & CPU happens at cache-
line granularity

 Observation: Graphs exhibit poor spatial locality
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~85% of data transferred from off-chip memory 
remains unused



Mitigating Lower Bandwidth of SCM
Potential Solutions:

Software

 Exploit graph topology to reorder vertices  Improved 
spatial locality

Hardware

 Revisit sectored caches  Only fetch the required words 
into on-chip caches
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Mitigating Lower Write Endurance of SCM
New design goal: Reduce off-chip write traffic

Potential Solutions:

Software:

 Approaches to improve write locality in on-chip caches

• E.g., pull-based vs push-based approach

Hardware:

 Aggressively retain cachelines that accumulate writes

• Even at the expense of short temporal reuse of some cachelines
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Conclusion

 Introduction of SCM will provide large capacity main 
memory at affordable price in commodity server

 SCM will enable in-memory scale-up graph analytics even 
for extremely large graphs

• Open research questions on how to address weaknesses of 
SCM to achieve high performance for scale-up graph analytics
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Scale-Up Out



Thank You

UK System Research Challenges Workshop  
March 22, 2018

17

Priyank Faldu
PhD Student

The University of Edinburgh

www.faldupriyank.com

Boris Grot
Lecturer

The University of Edinburgh

http://homepages.inf.ed.ac.uk/bgrot

http://www.faldupriyank.com/
http://homepages.inf.ed.ac.uk/bgrot

