
Cross-architecture
Virtualisation

Tom Spink
Harry Wagstaff, Björn Franke

School of Informatics
University of Edinburgh

Virtualisation
Many of you will be familiar with same-architecture virtualisation (e.g. VirtualBox,
Parallels, Xen, etc)

You may think of cross-architecture virtualisation as “simulation” or “emulation”

But, the goals for simulation are different to virtualisation.

Cross-architecture Virtualisation
Virtualising a guest architecture on a different host architecture, for example
AArch64 on x86.

Less interested in accurate simulation of architectural components, whilst
remaining architecturally correct.

More interested in fast execution of guest architecture, whilst remaining
functionally correct.

Useful for design space exploration, embedded system development, security
research, running unmodified guest environments on faster host machines...

Cross-architecture Virtualisation
We still need to emulate the behaviour of guest architecture.

We could use para-virtualisation, e.g. VirtIO, but virtualising an unmodified system
needs architectural components to behave correctly.

Hypervisor

Disk Network

Operating System

Virtual Machine Hypervisor

Disk Network

Operating System

Virtual Machine

Hardware Assisted Virtualisation
Available for same-architecture virtualisation (e.g. Intel VT, AMD-V, ARM
Virtualization Extensions)

Can we exploit these features for cross-architecture virtualisation?

Guest VM Guest VM Guest VM

Operating System

Hypervisor

Intel VT

Host Machine

Captive
Captive is an implementation of a cross-architecture virtualisation hypervisor.

Its core goal is to map guest architectural behaviour to host architectural
behaviour.

● Instruction mapping

● MMU mapping

● Device/IRQ mapping

ldr x0, [x1]
mov 8(%rbp), %rbx
mov (%rbx), %rdx
mov %rdx, (%rbp)

PHYS: 0x00005000
APX: 1
AP: 1

PHYS: 0x100005000
U/S: 0
R/W: 0
P: 1

Captive
● Both host and guest architecture are pluggable

○ Host machine requires KVM support
■ Also need to write a JIT backend!

○ Guest architecture requires patience!

● Architectural components are modular
○ Processor
○ Devices
○ (MMU)

● Supports instruction tracing
○ Quite fast!
○ Very useful for debugging

● Memory access tracing/cache simulation

Structure
Hypervisor (KVM)

Runs as a user-mode program on a Linux host. Uses
KVM to create a virtual machine instance.

Engine (Bare Metal)

A unikernel that implements the architectural mapping.

Guest (Unmodified)

The guest platform - typically a kernel to boot, and a
file-system.

Host Physical Machine

Linux

Captive Hypervisor

KVM

Host Virtual Machine

Execution Engine

Guest Virtual
Machine

Interpretation is far too slow; use Dynamic Binary Translation (DBT)

Captive implements a high-speed domain-specific JIT compiler, generated from a
high-level architecture description language. Very fast translation, compilation and
optimisation.

High-level C-like descriptions are used to describe guest instruction behaviours.

Instruction Virtualisation

Instruction
Behaviour

Translator
Source Code Translator Host Machine

Code

Guest
Machine

Code

Offline Runtime

Instruction Virtualisation
At JIT compilation time, each guest instruction in a basic-block is asked to
translate itself directly into x86.

Block translations are cached by physical address -- no need for invalidation on
page table changes, only need to beware of self-modifying code.

Guest Basic
Block

(Trace)

Translator Low-level
Machine IR

Register
Allocator/
Optimiser

Machine Code

Cache

Instruction Virtualisation - Self-modifying Code
Since translations are cached, changes to the guest executable code need to be
detected, and translations invalidated.

Captive marks all guest memory pages as read-only after compiling a block (via
the top-level page table entry), so any writes will trigger self-modifying code
detection.

Unfortunately, the entire guest VA space must be protected, since multiple VAs
can point to the same PA.

SMC is practically non-existent in early (Linux) system runtime, only appears later
when OS needs memory for newer programs.

Memory Virtualisation
The guest platform defines it’s physical memory layout.

Physical memory regions are instantiated that mirror guest
RAM areas.

No MMU: Build 1-1 mapping of Guest Physical Memory to
VM Virtual Memory.

MMU: Maintain virtual-to-physical mappings in VM that
represent virtual-to-physical mappings in guest.

An ARM page table entry gets turned into a similar x86 page
table entry. Hardware MMU virtualisation! VM Physical Memory

x86 stuff

Execution Engine

0x100000000 (4GB)

0x000000000

Guest Physical Memory

RAM

RAM

RAM

32-bit on 64-bit
Easy, 32-bit virtual memory area fits within lower
portion of 64-bit address space.

Efficient mapping of guest MMU to host MMU,
translate guest page table entries almost directly to
host page table entries.

Lazily perform translations (on guest memory
accesses). Trap guest TLB flushes to invalidate
mapped entries.

Fast invalidation by clearing top-level page table
entry (PML4E)

32-bit
Address Space

For guest machine

Address Space
for execution

engine

64-bit Virtual Memory

...

Native Virtual Machine

64-bit on 64-bit
Tricky, we need some 64-bit address space for the
execution engine, JITted code, book-keeping, etc.

Also, 64-bit isn’t really 64-bit - it’s 48-bit on x86 and
on ARMv8 the situation is complicated by having
two address spaces.

Possible solution: Have four page tables,
representing slices of the guest 64-bit address
space, and switch these depending on the memory
address being accessed.

TLB penalty significant, although PCIDs help here.

Address
Space

0..1

Address Space
for execution

engine

64-bit Virtual Memory

...

Native Virtual Machine

Address
Space

2..3
...

Memory Instruction Virtualisation
ARMv7 Instruction:

ldr r3, [r4]

x86 Translated Sequence:

mov 0x10(%rdi), %eax
mov (%rax), %eax
mov %eax, 0xc(%rdi)
add $0x4, %r15

ARMv8 Instruction:

ldr x0, [x1]

x86 Translated Sequence:

 mov 0x8(%rbp), %rcx
 movabs $0x7fffffffffff, %rax
 and %rcx, %rax
 shr $0x2f, %rcx
 and $0x3, %ecx
 cmp %cl, %fs:0x68
 je 1f
 mov %cl, %fs:0x68
 mov %fs:0x70(%riz,%rcx,8), %rcx
 mov %rcx, %cr3
1: mov (%rax), %rax
 mov %rax, (%rbp)
 lea 0x4(%r15), %r15

Privilege Levels
Take advantage of x86 privilege levels (only ring 0 and ring 3 in long mode!) and
track guest execution state with these.

Extra memory protection flags for free!

...
svc #0

...
sysenter

PL0 RING
3

...
eret

...
sysret

PL1 RING
0

...

...
...
...

PL0 RING
3

Guest Code Host Code

Device/IRQ Virtualisation
● Para-virtualisation with VirtIO - easy, just pass it through.
● Real device virtualisation - not so easy, must emulate devices in software.
● Devices that are similar (e.g. timers) can map behaviour.
● Devices that do not exist must be implemented in software.
● Possibly significant communication overhead - hypercalls/MMIO traps are

expensive!

Emulated Device

Emulated Device

Emulated
Interrupt

Controller Raise VM IRQ

Virtual Machine

IRQ Handler

Execution Engine

Interrupt
Execution

Current/Future Work
Floating-point implementation - tricky because ARM and x86 behave differently.

(Some problems are in fact philosophical rather than technical, but still a lot of engineering required to
implement this mapping)

Intel MPX, interesting feature for fast address range checking, but doesn’t quite solve the problem of
switching page tables.

Intel MPK, could potentially solve problem (but need access to hardware to evaluate)

Intel PT, possibly exploit this to accelerate guest tracing

GDB integration, engine side for debugging core + JIT, guest side for debugging guest execution

Removal of custom hypervisor - push device emulation into execution engine, to keep engine
self-contained.

GenSim
GenSim is our flagship Simulator Generation tool

https://gensim.org

It is now available as open-source software, with Captive soon to follow.

System Description

Semantic Description

Syntax Description

GenSim C++ Source
Code Captive

Guest Platform

Virtual Machine

http://gensim.org

Edinburgh Simulation Group
Tom Spink, Harry Wagstaff, Kuba Kaszyk, Bruno Bodin, Bjoern Franke

GenSim - Simulator Generation Tool

ArchSim - High Speed Simulation

Captive - High Speed Virtualisation

GPUSim - Unmodified GPU Simulation

SimBench - Simulator Benchmarking

ISPASS’18 Tutorial

Any Questions?

Dr Tom Spink

tspink@inf.ed.ac.uk
https://homepages.inf.ed.ac.uk/tspink

School of Informatics, University of Edinburgh

With Dr Harry Wagstaff & Dr Bjoern Franke

hwagstaf@inf.ed.ac.uk, bfranke@inf.ed.ac.uk

mailto:tspink@inf.ed.ac.uk
https://homepages.inf.ed.ac.uk/tspink
mailto:hwagstaf@inf.ed.ac.uk
mailto:bfranke@inf.ed.ac.uk

