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Virtualisation
Many of you will be familiar with same-architecture virtualisation (e.g. VirtualBox, 
Parallels, Xen, etc)

You may think of cross-architecture virtualisation as “simulation” or “emulation”

But, the goals for simulation are different to virtualisation.



Cross-architecture Virtualisation
Virtualising a guest architecture on a different host architecture, for example 
AArch64 on x86.

Less interested in accurate simulation of architectural components, whilst 
remaining architecturally correct.

More interested in fast execution of guest architecture, whilst remaining 
functionally correct.

Useful for design space exploration, embedded system development, security 
research, running unmodified guest environments on faster host machines...



Cross-architecture Virtualisation
We still need to emulate the behaviour of guest architecture.

We could use para-virtualisation, e.g. VirtIO, but virtualising an unmodified system 
needs architectural components to behave correctly.
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Hardware Assisted Virtualisation
Available for same-architecture virtualisation (e.g. Intel VT, AMD-V, ARM 
Virtualization Extensions)

Can we exploit these features for cross-architecture virtualisation?
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Captive
Captive is an implementation of a cross-architecture virtualisation hypervisor.

Its core goal is to map guest architectural behaviour to host architectural 
behaviour.

● Instruction mapping

● MMU mapping

● Device/IRQ mapping

ldr x0, [x1]
mov 8(%rbp), %rbx
mov (%rbx),  %rdx
mov %rdx,    (%rbp)

PHYS: 0x00005000
APX:  1
AP:   1

PHYS: 0x100005000
U/S:  0
R/W:  0
P:    1



Captive
● Both host and guest architecture are pluggable

○ Host machine requires KVM support
■ Also need to write a JIT backend!

○ Guest architecture requires patience!

● Architectural components are modular
○ Processor
○ Devices
○ (MMU)

● Supports instruction tracing
○ Quite fast!
○ Very useful for debugging

● Memory access tracing/cache simulation



Structure
Hypervisor (KVM)

Runs as a user-mode program on a Linux host.  Uses 
KVM to create a virtual machine instance.

Engine (Bare Metal)

A unikernel that implements the architectural mapping.

Guest (Unmodified)

The guest platform - typically a kernel to boot, and a 
file-system.
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Interpretation is far too slow; use Dynamic Binary Translation (DBT)

Captive implements a high-speed domain-specific JIT compiler, generated from a 
high-level architecture description language.  Very fast translation, compilation and 
optimisation.

High-level C-like descriptions are used to describe guest instruction behaviours.
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Instruction Virtualisation
At JIT compilation time, each guest instruction in a basic-block is asked to 
translate itself directly into x86.

Block translations are cached by physical address -- no need for invalidation on 
page table changes, only need to beware of self-modifying code.
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Instruction Virtualisation - Self-modifying Code
Since translations are cached, changes to the guest executable code need to be 
detected, and translations invalidated.

Captive marks all guest memory pages as read-only after compiling a block (via 
the top-level page table entry), so any writes will trigger self-modifying code 
detection.

Unfortunately, the entire guest VA space must be protected, since multiple VAs 
can point to the same PA.

SMC is practically non-existent in early (Linux) system runtime, only appears later 
when OS needs memory for newer programs.



Memory Virtualisation
The guest platform defines it’s physical memory layout.

Physical memory regions are instantiated that mirror guest 
RAM areas.

No MMU: Build 1-1 mapping of Guest Physical Memory to 
VM Virtual Memory.

MMU: Maintain virtual-to-physical mappings in VM that 
represent virtual-to-physical mappings in guest.

An ARM page table entry gets turned into a similar x86 page 
table entry. Hardware MMU virtualisation! VM Physical Memory

x86 stuff
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32-bit on 64-bit
Easy, 32-bit virtual memory area fits within lower 
portion of 64-bit address space.

Efficient mapping of guest MMU to host MMU, 
translate guest page table entries almost directly to 
host page table entries.

Lazily perform translations (on guest memory 
accesses). Trap guest TLB flushes to invalidate 
mapped entries.

Fast invalidation by clearing top-level page table 
entry (PML4E)
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64-bit on 64-bit
Tricky, we need some 64-bit address space for the 
execution engine, JITted code, book-keeping, etc.

Also, 64-bit isn’t really 64-bit - it’s 48-bit on x86 and 
on ARMv8 the situation is complicated by having 
two address spaces.

Possible solution: Have four page tables, 
representing slices of the guest 64-bit address 
space, and switch these depending on the memory 
address being accessed.

TLB penalty significant, although PCIDs help here.
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Memory Instruction Virtualisation
ARMv7 Instruction:

ldr r3, [r4]

x86 Translated Sequence:

mov 0x10(%rdi), %eax
mov (%rax), %eax
mov %eax, 0xc(%rdi)
add $0x4, %r15

ARMv8 Instruction:

ldr x0, [x1]

x86 Translated Sequence:

   mov    0x8(%rbp), %rcx
   movabs $0x7fffffffffff, %rax
   and    %rcx, %rax
   shr    $0x2f, %rcx
   and    $0x3, %ecx
   cmp    %cl, %fs:0x68
   je     1f
   mov    %cl, %fs:0x68
   mov    %fs:0x70(%riz,%rcx,8), %rcx
   mov    %rcx, %cr3
1: mov    (%rax), %rax
   mov    %rax, (%rbp)
   lea    0x4(%r15), %r15



Privilege Levels
Take advantage of x86 privilege levels (only ring 0 and ring 3 in long mode!) and 
track guest execution state with these.

Extra memory protection flags for free!

...
svc #0

...
sysenter

PL0 RING 
3

...
eret

...
sysret

PL1 RING 
0

...

...
...
...

PL0 RING 
3

Guest Code Host Code



Device/IRQ Virtualisation
● Para-virtualisation with VirtIO - easy, just pass it through.
● Real device virtualisation - not so easy, must emulate devices in software.
● Devices that are similar (e.g. timers) can map behaviour.
● Devices that do not exist must be implemented in software.
● Possibly significant communication overhead - hypercalls/MMIO traps are 

expensive!
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Current/Future Work
Floating-point implementation - tricky because ARM and x86 behave differently.

(Some problems are in fact philosophical rather than technical, but still a lot of engineering required to 
implement this mapping)

Intel MPX, interesting feature for fast address range checking, but doesn’t quite solve the problem of 
switching page tables.

Intel MPK, could potentially solve problem (but need access to hardware to evaluate)

Intel PT, possibly exploit this to accelerate guest tracing

GDB integration, engine side for debugging core + JIT, guest side for debugging guest execution

Removal of custom hypervisor - push device emulation into execution engine, to keep engine 
self-contained.



GenSim
GenSim is our flagship Simulator Generation tool

https://gensim.org

It is now available as open-source software, with Captive soon to follow.

System Description

Semantic Description

Syntax Description

GenSim C++ Source 
Code Captive

Guest Platform

Virtual Machine

http://gensim.org


Edinburgh Simulation Group
Tom Spink, Harry Wagstaff, Kuba Kaszyk, Bruno Bodin, Bjoern Franke

GenSim - Simulator Generation Tool

ArchSim - High Speed Simulation

Captive - High Speed Virtualisation

GPUSim - Unmodified GPU Simulation

SimBench - Simulator Benchmarking

ISPASS’18 Tutorial



Any Questions?

Dr Tom Spink

tspink@inf.ed.ac.uk
https://homepages.inf.ed.ac.uk/tspink

School of Informatics, University of Edinburgh

With Dr Harry Wagstaff & Dr Bjoern Franke

hwagstaf@inf.ed.ac.uk, bfranke@inf.ed.ac.uk
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